-mechanism of excitation-contraction coupling also relies on STIM1 and STIM2. Live cell imaging of early differentiating myoblasts revealed a characteristic clustering of activated STIM1 and STIM2 during the first few

نویسندگان

  • Basile Darbellay
  • Serge Arnaudeau
  • Dimitri Ceroni
  • Charles R Bader
  • Stephane Konig
  • Laurent Bernheim
چکیده

Our recent work identified Store-Operated Ca 2+ Entry (SOCE) as the critical Ca 2+ -source required for the induction of human myoblast differentiation (1). The present work indicates that STIM2 silencing, as STIM1 silencing, reduces myoblast SOCE amplitude and differentiation. As myoblasts in culture can be induced to differentiate into myotubes, which spontaneously contract in culture, we used the same molecular tools to explore whether the Ca 2+ -mechanism of excitation-contraction coupling also relies on STIM1 and STIM2. Live cell imaging of early differentiating myoblasts revealed a characteristic clustering of activated STIM1 and STIM2 during the first few hours of differentiation. Thapsigargin-induced depletion of endoplasmic reticulum Ca 2+ content caused STIM1 and STIM2 redistribution into clusters, and co-localization of both STIM proteins. Interaction of STIM1 and STIM2 was revealed by a rapid increase in FRET between CFP-STIM1 and YFP-STIM2 after SOCE activation and confirmed by co-immunoprecipitation of endogenous STIM1 and STIM2. Although both STIM proteins clearly contribute to SOCE and are required during the differentiation process, STIM1 and STIM2 are functionally largely redundant as over-expression of either STIM1 or STIM2 corrected most of the impact of STIM2 or STIM1 silencing on SOCE and differentiation. With respect to excitation-contraction, we observed that human myotubes rely also on STIM1 and STIM2 to refill their endoplasmic reticulum Ca 2+ -content during repeated KCl-induced Ca 2+ releases. This indicates that STIM2 is a necessary partner of STIM1 for excitation/contraction coupling. Thus, both STIM proteins are required and interact to control SOCE during human myoblast differentiation and human myotubes excitation/contraction coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stromal interaction molecule 2 regulates C2C12 myoblast differentiation

BACKGROUND Enhanced intracellular Ca2+ signaling by stromal interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) is required for skeletal muscle differentiation. However, the contribution of STIM2, STIM1's analogue protein, on muscle cell differentiation has not been clearly elucidated. The present study aimed to explore the contribution of STIM2-mediated SOCE on C2C12 myobl...

متن کامل

STIM2 Is an Inhibitor of STIM1-Mediated Store-Operated Ca2+ Entry

The coupling mechanism between endoplasmic reticulum (ER) Ca(2+) stores and plasma membrane (PM) store-operated channels (SOCs) remains elusive [1-3]. STIM1 was shown to play a crucial role in this coupling process [4-7]; however, the role of the closely related STIM2 protein remains undetermined. We reveal that STIM2 is a powerful SOC inhibitor when expressed in HEK293, PC12, A7r5, and Jurkat ...

متن کامل

CD4⁺ and CD8⁺ T cell-dependent antiviral immunity requires STIM1 and STIM2.

Calcium signaling is critical for lymphocyte function, and intracellular Ca2+ concentrations are regulated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels. In patients, loss-of-function mutations in CRAC channel components ORAI1 and STIM1 abolish SOCE and are associated with recurrent and chronic viral infections. Here, using mice with conditional deletio...

متن کامل

Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca²+ signaling by differentially modulating STIM1 and STIM2.

Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimu...

متن کامل

T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells.

T-cell function is dependent on store-operated Ca(2+) influx that is activated by the stromal interaction molecules (STIM) 1 and 2. We show that mice with T-cell-specific deletion of STIM1 or STIM2 are protected from EAE, a mouse model of multiple sclerosis (MS). While STIM1- and STIM2-deficient T cells could be successfully primed by autoantigen, they failed to produce the proinflammatory cyto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010